Critical factors that impact purchase online of new telecom convergent services in the Mexican market

Autores/as

  • Rolando Zubirán Shetler UANL
  • Jesús Fabian López Pérez UANL

DOI:

https://doi.org/10.29105/rinn7.14-1

Resumen

Key words: Diffusion of innovations, electronic commerce, structural equations, Smart-PLS, technology acceptance

Abstract. The following article analyzes the principal factors that have an impact in the adoption of new telecom convergent services, through electronic commerce, that have been explored and studied primarily in developed markets such as the United States and that have been deemed as critical factors in the development and growth of online electronic transactions. Specifically, factors and latent variables of this study derive from the models of Technology Acceptance (Davis, 1989) and Diffusion of Innovations (Rogers, 2003). A summary of past empirical studies is provided deriving from the aforementioned theoretical models followed by results of an exploratory field study comprising of 253 valid observations randomly selected from within the population of urban internet users in Mexico. The methodology used to determine the causal relationship between variables (Betas) was factor analysis (Principal Components) and structural equation modeling, specifically Smart-PLS. The study determined that perceived utility and trust variables are statistically relevant and significant in determining purchase online of new telecom convergent services and the development of electronic commerce in the Mexican Market.

Palabras clave: Aceptación de la tecnología, comercio electrónico, difusión de las innovaciones, ecuaciones estructurales, Smart-PLS.

Resumen. Este artículo analiza los principales factores que influyen en la adopción de los nuevos servicios convergentes de telecomunicaciones, a traves del comercio electrónico, que han sido explorados y estudiados principalmente en mercados desarrollados como el de Estados Unidos y que han sido confirmados como factores críticos en el desarrollo y el crecimiento de las transacciones electrónicas en linea. Específicamente, los factores y variables latentes en este estudio se derivan de los modelos de Aceptación de la Tecnología (Davis, 1989) y la Difusión de las Innovaciones (Rogers, 2003). Se presenta un resumen de los antecedentes de estudios empíricos derivados de los mencionados modelos teóricos, seguido de los resultados de un estudio exploratorio de campo que comprende 253 observaciones válidas seleccionadas en forma aleatoria dentro de la población de usuarios urbanos de Internet en México. La metodología utilizada para determinar las relaciones causales entre las variables (Betas) fue análisis factorial (Componentes Principales) y el modelo de ecuaciones estructurales, específicamente Smart-PLS. El estudio determina que las variables percepción de utilidad y confianza son estadísticamente relevantes y significativas en la determinación de compra en línea de nuevos servicios convergentes de telecomunicaciones y en el desarrollo del comercio electrónico en el Mercado Mexicano.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

AMIPCI. 2007. Infraestructura tecnológica México, 2007. Asociación Mexicana de Internet. México, D.F.

AMIPCI. 2008. Estudio de comercio electrónico 2008 Vice-Presidencia de Investigación de Mercados. Asociación Mexicana de Internet. México, D.F.

Chin,W.W., and Newsted, P.R. 1999. Structural equations modeling analysis with small samples using partial least squares. En Rick Hoyle (Ed.) Statistical strategies for small sample research Sage Publications, pp. 307-341

Davis, F. 1989. Perceived usefulness, perceived ease of use and user acceptance of information technology. MIS Quarterly / September 1989. DOI: https://doi.org/10.2307/249008

García-Murillo, M. 2004. Institutions and the adoption of electric commerce in Mexico.Electronic Commerce Research Vol. 4 (Págs. 201-219). Netherlands:Springer Links. DOI: https://doi.org/10.1023/B:ELEC.0000027980.16492.af

Garson, D. 2009. Structural equation modeling. Statnotes, from North Carolina State University, Public Administration Program.

Garson, D. 2009. Partial least squares regression (PLS). Statnotes, from North Carolina State University, Public Administration Program.

Gefen, D. 2000. E-commerce: the role of familiarity and trust. Philadelphia, USA: International Journal of Management Science 28, 725-737. DOI: https://doi.org/10.1016/S0305-0483(00)00021-9

Gefen, D., Karahanna, E. and Straub, D.W. 2003. Trust and tam in online shopping: an integrated model. USA: MIS Quarterly Vol. 27 No. 1, pp. 51-90. DOI: https://doi.org/10.2307/30036519

Gefen, D. and Straub, D.W. 2004. Consumer trust in B2C e-commerce and the importance of social presence: experiments in e-products and e- services. USA: International Journal of Management Science 32, pp. 407-424 DOI: https://doi.org/10.1016/j.omega.2004.01.006

Gurung, A. 2006. Empirical investigation of the relationship of privacy, security and trust with behavioral intention to trasact in e-commerce. Ph. D. Dissertation The University of Texas at Arlington; ProQuest UMI No. 3212100.

Heijden, H.V.D., Verhagen, T. and Creemers M. 2003. Understanding online purchase intentions: contributions from technology and trust perspectives. Amsterdam, The Netherlands: European Journal of Information Systems, 41-48. DOI: https://doi.org/10.1057/palgrave.ejis.3000445

Henseler, J.; Ringle, C.; Sinkovics, R. 2009. The use of partial least squares path modeling in international marketing. Advance in International Marketing, Vol. 20. Emerald Group Publishing LTD. DOI: https://doi.org/10.1108/S1474-7979(2009)0000020014

Horrigan, J. 2001. Risky business: American see greed, cluelessness behind dot-coms’ comeuppance. Washington DC: Pew Internet & American Life Project.

Karahanna, E., Straub, D. & Chervany, N. 1999. Information technology adoption across time.MIS Quarterly Vol. 23, No. 2, pp. 183-213. DOI: https://doi.org/10.2307/249751

Keystone, P.J. 2008. Antecedents of online consumers’ intention to buy. Doctoral Dissertation. H. Wayne Huizenga School of Business and Entrepreneurship Nova Southeastern University; ProQuest UMI No. 3312016.

Lee, M.K.O. and Turban, E. 2001. A trust model for consumer internet shopping. International Journal of Electronic Commerce, Vol. 6, No. 1, pp. 75-91 DOI: https://doi.org/10.1080/10864415.2001.11044227

Liu, Ch. 2004. Modeling Consumer adoption of the internet as a shopping medium: An integrated perspective. Ph.D. Dissertation Auburn University, Alabama; ProQuest UMI No. 3136006

McKnight, D.H., Choudhury, V. and Kacmar, Ch. 2002. Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, Vol. 13, No. 3 pp. 334-359. DOI: https://doi.org/10.1287/isre.13.3.334.81

Moore, G. & Benbasat, I. 1991. Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research 2:3. DOI: https://doi.org/10.1287/isre.2.3.192

Moore, G. & Benbasat, I. 1996. Integrating diffusion of innovations and theory of reasoned action models to predict utilization of information technology by end users. In Diffusion and Adoption of Information Technology, Kautz, K. and Pries-Hege,J. (eds), Chapman and Hall, London. pp. 132-146. DOI: https://doi.org/10.1007/978-0-387-34982-4_10

Mulpuru, S. 2006. US e Commerce: Five year forecast and data overview. Forrester Research Inc. USA: Base de datos comercial.

Mulpuru S. 2009. US B2C e commerce in 2009 and beyond. Forrester Research, Inc. OECD Communications Outlook 2007. (2007). OECD.

Pavlou, P.A. 2003. Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, Vol. 7, No. 3 pp. 101-134 DOI: https://doi.org/10.1080/10864415.2003.11044275

Ranganathan, C. and Sanjeev Jha. 2007. Examining online purchase intentions in B2C ecommerce: testing an integrated model. Chicago, USA: Information Resources Management Journal, Volume 20, Issue 4. DOI: https://doi.org/10.4018/irmj.2007100104

Ringle, C.M., Wende, S., and Will, A. 2005. Smart PLS 2.0 (m3) Beta. Hamburgo. http://www.smartpls.de.

Rogers, E. 2003. Diffusion of innovations. Fifth Edition The Free Press, New York, USA. The Economist Group (2002). Too many debts; too few calls. The Economist, USA: Base de datos commercial.

Tenenhaus, M.; Esposito Vinci, V.; Chatelin, Y. & Lauro, C. 2005. PLS Path Modeling. Computational Statistics and Data Analysis, 48 (I). DOI: https://doi.org/10.1016/j.csda.2004.03.005

Venkatesh, V. & Davis, F. 2000. A theoretical extension of the technology acceptance model. Management Science Vol. 46, No. 2. DOI: https://doi.org/10.1287/mnsc.46.2.186.11926

Descargas

Publicado

2017-12-07

Cómo citar

Zubirán Shetler, R., & López Pérez, J. F. (2017). Critical factors that impact purchase online of new telecom convergent services in the Mexican market. Revista Innovaciones De Negocios, 7(14). https://doi.org/10.29105/rinn7.14-1