Factores críticos que determinan la intención de compra en línea en el comercio electrónico mexicano


  • Rolando Zubirán UANL
  • Jesús F. López UANL




Key Words. Electronic commerce, Smart-PLS, structural equations, technology acceptance, diffusion of innovations.

Abstract. The following article analyzes the principal factors of electronic commerce that have been explored and studied primarily in developed markets such as the United States and that have been deemed as critical actors in the development and growth of electronic transactions. Specifically, variables and latent factors of this study derive from the models of Technology Acceptance (Davis, 1989) and Diffusion of Innovations (Rogers, 2003). A
summary of past empirical studies is provided deriving from the aforementioned theoretical models followed by results of an exploratory field study comprising of 39 valid observations randomly selected from within the Professional Employees Internet Users segment. The methodology used to determine the causal relationship between variables (Betas) was factor analysis (Principal Components) and structural equation modeling, specifically Smart-PLS.
The study determined that perceived utility, security and compatibility variables were statistically relevant and significant in determining purchase online intent or the development of electronic commerce in the Professional Employees Internet Users Segment.

Palabras Clave. Aceptación de la tecnología, comercio electrónico, difusión de las
innovaciones, ecuaciones estructurales, Smart-PLS.

Resumen. Este artículo analiza los factores del comercio electrónico que han sido
explorados y estudiados principalmente en mercados desarrollados (EUA) y que han sido confirmados como críticos en el desarrollo y crecimiento de las transacciones electrónicas. En forma específica, los factores o variables latentes en estudio tienen el sustento y la justificación teórica de los modelos de Aceptación de la Tecnología (Davis, 1989) y la Difusión de las Innovaciones (Rogers, 2003). Se presenta un resumen de los antecedentes


Los datos de descargas todavía no están disponibles.


Cargando métricas ...


AMIPCI (2007). Infraestructura Tecnológica México, 2007. Asociación Mexicana de Internet. México, D.F.

AMIPCI (2008). Estudio de comercio electrónico 2008. Vice-Presidencia de Investigación de Mercados. Asociación Mexicana de Internet. México, D.F.

Chin, W.W., & Newsted, P.R. (1999). Structural equations modeling analysis with small samples using partial least squares, en Rick Hoyle (Ed.) Statistical strategies for small sample research. Sage Publications, (pp. 307-341).

Davis, F. (1989). Perceived usefulness, perceived ease of use and user acceptance of information technology. USA: MIS Quarterly / September 1989. DOI: https://doi.org/10.2307/249008

García-Murillo, M. (2004). Institutions and the adoption of electronic commerce in Mexico. Electronic Commerce Research Vol. 4 (pp. 201-219). Netherlands: Springer Links. DOI: https://doi.org/10.1023/B:ELEC.0000027980.16492.af

Garson, D. (2009). Structural equation modeling. Statnotes from North Carolina State University, Public Administration Program. USA.

Garson, D. (2009). Partial least squares regression (PLS). Statnotes from North Carolina State University, Public Administration Program. USA.

Gefen, D. (2000). E-commerce: the role of familiarity and trust. Philadelphia, USA: International Journal of Management Science 28, (pp. 725-737). DOI: https://doi.org/10.1016/S0305-0483(00)00021-9

Gefen, D., Karahanna, E. and Straub, D.W. (2003). Trust and tam in online shopping: an integrated model. USA: MIS Quarterly Vol. 27 No. 1 (pp. 51-90). DOI: https://doi.org/10.2307/30036519

Gefen, D. & Straub, D.W. (2004). Consumer trust in B2C e-commerce and the importance of social presence: experiments in e-products and e- services. USA: International Journal of Management Science 32 (pp. 407-424). DOI: https://doi.org/10.1016/j.omega.2004.01.006

Gurung, A. (2006). Empirical investigation of the relationship of privacy, security and trust with behavioral intention to trasact in e-commerce. Ph. D. Dissertation The University of Texas at Arlington; ProQuest UMI No. 3212100.

Heijden, H.V.D., Verhagen, T. & Creemers M. (2003). Understanding online purchase intentions: contributions from technology and trust perspectives. Amsterdam, The Netherlands: European Journal of Information Systems, (pp. 41-48). DOI: https://doi.org/10.1057/palgrave.ejis.3000445

Henseler, J.; Ringle, C.; Sinkovics, R. (2009). The use of partial least squares path modeling in international marketing. Advance in International Marketing, Vol. 20. Emerald Group Publishing LTD. DOI: https://doi.org/10.1108/S1474-7979(2009)0000020014

Horrigan, J. (2001). Risky business: American see greed, cluelessness behind dot-coms’ comeuppance. Washington DC: Pew Internet & American Life Project.

Karahanna, E., Straub, D. & Chervany, N. (1999). Information technology adoption across time. MIS Quarterly Vol. 23, No. 2 (pp. 183-213). DOI: https://doi.org/10.2307/249751

Keystone, P.J. (2008). Antecedents of online consumers’ intention to buy. Doctoral Dissertation. H. Wayne Huizenga School of Business and Entrepreneurship Nova Southeastern University; ProQuest UMI No. 3312016.

Lee, M.K.O. & Turban, E. (2001). A trust model for consumer internet shopping. International Journal of Electronic Commerce, Vol. 6, No. 1 (pp. 75-91). DOI: https://doi.org/10.1080/10864415.2001.11044227

Liu, Ch. (2004). Modeling Consumer adoption of the internet as a shopping medium: An integrated perspective. Ph.D. Dissertation Auburn University, Alabama; ProQuest UMI No. 3136006.

McKnight, D.H., Choudhury, V. and Kacmar, Ch. (2002). Developing and validating trust measures for e-commerce: An integrative typology. Information Systems Research, Vol. 13, No. 3 (pp. 334-359). DOI: https://doi.org/10.1287/isre.13.3.334.81

Moore, G. & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research 2:3. DOI: https://doi.org/10.1287/isre.2.3.192

Moore, G. & Benbasat, I. (1996). Integrating diffusion of innovations and theory of reasoned action models to predict utilization of information technology by end users. In Diffusion and Adoption of Information Technology, Kautz, K. and Pries- DOI: https://doi.org/10.1007/978-0-387-34982-4_10

Hege,J. (eds), Chapman and Hall, London. (pp. 132-146).

Mulpuru, S. (2006). US e Commerce: Five year forecast and data overview. Forrester Research Inc. USA: Base de datos comercial.

Mulpuru S. (2009). US B2C e commerce in 2009 and beyond. Forrester Research, Inc. USA: Base de datos comercial.

OECD Communications Outlook 2007. (2007). OECD.

Pavlou, P.A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, Vol. 7, No. 3 (pp. 101-134). DOI: https://doi.org/10.1080/10864415.2003.11044275

Ranganathan, C. & Sanjeev Jha (2007). Examining online purchase intentions in B2C ecommerce: testing an integrated model. Chicago, USA: Information Resources Management Journal, Volume 20, Issue 4. DOI: https://doi.org/10.4018/irmj.2007100104

Ringle, C.M., Wende, S., & Will, A. (2005). Smart PLS 2.0 (m3) Beta. Hamburgo. http://www.smartpls.de.

Rogers, E. (2003). Diffusion of innovations. New York, USA: The Free Press, Fifth Edition.

The Economist Group (2002). Too many debts; too few calls. The Economist, USA: Base de datos commercial.

Tenenhaus, M.; Esposito Vinci, V.; Chatelin, Y. & Lauro, C. (2005). PLS Path Modeling. Computational Statistics and Data Analysis, 48 (I). DOI: https://doi.org/10.1016/j.csda.2004.03.005

Venkatesh, V. & Davis, F. (2000) A theoretical extension of the technology acceptance model. Management Science Vol. 46, No. 2. DOI: https://doi.org/10.1287/mnsc.




Cómo citar

Zubirán, R., & López, J. F. (2017). Factores críticos que determinan la intención de compra en línea en el comercio electrónico mexicano. Innovaciones De Negocios, 6(12). https://doi.org/10.29105/rinn6.12-6