Determinants factors of business insolvency: the case applied to the Bolsa Mexicana de Valores
DOI:
https://doi.org/10.29105/rinn18.35-e3Keywords:
business insolvency, models with panel data, prediction, public enterprises, sector studiesAbstract
The objective of this research it to contribute to the knowledge of the impact financial and economic factors on the business insolvency of public companies listed on the stock exchange. In addition, a comparative analysis is carried out
between companies and sectors that incurred insolvency and those that have not to do this, the methodology is used with panel data. The information in this study comes from public companies that have listed on the Mexican stock
exchange in the last 26 years. The results indicate that financial, non-financial and macroeconomic factors are the determinants in business insolvency; on the other hand, in the multisectoral model, the sectors most likely in fall into
business insolvency are the frequent consumer products sector, the industrial sector, followed by the non-basic consumer goods and services sector, the one with the less risk is the material sector.
Downloads
References
Abidali, A. F., y Harris, F. (1995). A methodology for predicting company failure in the construction industry. Construction management and economics, 13(3), 189-196.
Agarwal, V., & Taffler, R. (2008). Comparing the performance of market-based and accounting-based bankruptcy prediction models. Journal of Banking & Finance, 32(8), 1541-1551.
Almamy, J., Aston, J., y Ngwa, L. N. (2016). An evaluation of
Altman's Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK. Journal of Corporate Finance, 36, 278-285.
Altman, E. I. (1968). Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The journal of finance, 23(4), 589-609.
Altman, E. I., & Suggitt, H. J. (2000). Default rates in the syndicated bank loan market: A mortality analysis. Journal of Banking & Finance, 24(1-2), 229-253.
Altman, E., Hartzell, J., Peck, M., Levich, R., & Mei, J. (1995). Future of emerging market flows. New York: Salomon Brothers, Inc.
Arroyave, J. (2018). A comparative analysis of the effectiveness of corporate bankruptcy prediction models based on financial ratios: Evidence from Colombia. Journal of International Studies, 11(1), 273-287.
Ayús, A. L. T., Velásquez, R. E. A., & Ceballos, H. V. (2010). Estimación de las provisiones esperadas en una institución financiera utilizando modelos Logit y Probit. Revista Ciencias Estratégicas, 18(24), 259-270.
Aziz, A., & Lawson, G. H. (1989). Cash flow reporting and financial distress models: Testing of hypotheses. Financial Management, 55-63.
Aziz, M. A., & Dar, H. A. (2006). Predicting corporate bankruptcy: where we stand? Corporate Governance: The international journal of business in society.
Bathory, A. (1984). Predicting Corporate Collapse: Credit Analysis in the Determination and Forecasting of Insolvent Companies. Financial Times Business Information.
Beaver, W. H. (1966). Financial ratios as predictors of failure. Journal of accounting research, 71-111.
Beaver, W. H., McNichols, M. F., & Rhie, J. W. (2005). Have financial statements become less informative? Evidence from the ability of financial ratios to predict bankruptcy. Review of Accounting studies, 10(1), 93-122.
BM. (04 de Junio de 2019). Global growth to weaken to 26 in 2019 substantial risks seen. Obtenido de Banco Mundial: https://www.bancomundial.org/es/news/press-release/2019/06/04/global-growth-to-weaken-to-26-in-2019-substantial-risks-seen
Brealey, R. A., Myers, S. C., Allen, F., Soria, L. N., & Izquierdo, M. Á. F. (2015). Principios de finanzas corporativas. McGraw-Hill Interamericana.
Briones, J. L., Marín, J. L. M., & Cueto, M. J. V. (1987). Predicción de la crisis bancaria en España: comparación entre el análisis logit y el análisis discriminante. Cuadernos de Ciencias Económicas y Empresariales, (18), 49-57.
Bukovinsky, D. M. (1994). Cash flow and cash position measures in the prediction of business failure: An empirical study.
Cabrera, A. A., Ayala, Á. A., Perus, M. C., M, S. Y., Ortega, A. H., & Peschard, J. (2006). Efectos psicosociales del desempleo . Revista de Investigación Social, UNAM, 67-82.
Campbell, J. Y., Hilscher, J. D., & Szilagyi, J. (2011). Predicting financial distress and the performance of distressed stocks. Journal of Investment Management.
Casey, C., & Bartczak, N. (1985). Using operating cash flow data to predict financial distress: Some extensions. Journal of Accounting Research, 384-401.
Christidis, A., & Gregory, A. (2010). Some new models for financial distress prediction in the UK. Xfi-Centre for Finance and Investment Discussion Paper, (10).
Cueto, M. J. V., Marín, J. L. M., & Briones, J. L. (1985). El análisis de la solvencia en las instituciones bancarias: Propuesta de una metodología y aplicaciones a la Banca española. Esic Market, (48), 51-73.
Dambolena, I. G., & Khoury, S. J. (1980). Ratio stability and corporate failure. The Journal of Finance, 35(4), 1017-1026.
Darrat, A. F., Gray, S., Park, J. C., & Wu, Y. (2016). Corporate governance and bankruptcy risk. Journal of Accounting, Auditing & Finance, 31(2), 163-202.
Diputados, C. d. (1990). Ley de quiebras y suspensión de pagos. Obtenido de http://www.diputados.gob.mx/bibliot/publica/inveyana/polint/dpi05/1marco.htm
Espinosa, F. R., Molina, Z. A. M., & Vera-Colina, M. A. (2015). Fracaso empresarial de las pequeñas y medianas empresas (pymes) en Colombia. Suma de negocios, 6(13), 29-41.
Fitzpatrick, P. J. (1932). A comparison of the ratios of successful industrial enterprises with those of failed companies.
Forrester, J. W. (1968). Industrial dynamics—after the first decade. Management Science, 14(7), 398-415.
Foster, G. Financial Statement Analysis, 1986.
Freire, A. G. H., Gonzaga, V. A. B., Freire, A. H. H., Rodríguez, S. R. V., & Granda, E. C. V. (2016). Razones financieras de liquidez en la gestión empresarial para toma de decisiones. Quipukamayoc, 24, 46.
García, M. D. P. R., Alejandro, K. A. C., Sáenz, A. B. M., & Sánchez, H. H. G. (2015). Análisis de portafolio por sectores mediante el uso de algoritmos genéticos: caso aplicado a la Bolsa Mexicana de Valores. Contaduría y administración, 60(1), 87-112.
García, M. L., Vega, T. d., & Uribe, H. M. (2009). Impacto social de una quiebra: Caso de la empresa automotriz mexicana Dina S.A. Economía XXXIV, 28 , 75-101.
Gentry, J. A., Newbold, P., & Whitford, D. T. (1985). Predicting bankruptcy: if cash flow’s not the bottom line, what is? Financial Analysts Journal, 41(5), 47-56.
Gombola, M. J., Haskins, M. E., Ketz, J. E., & Williams, D. D. (1987). Cash flow in bankruptcy prediction. Financial Management, 55-65.
Hillegeist, S. A., Keating, E. K., Cram, D. P., & Lundstedt, K. G. (2004). Assessing the probability of bankruptcy. Review of accounting studies, 9(1), 5-34.
Hsu, H. H., & Wu, C. Y. H. (2014). Board composition, grey directors and corporate failure in the UK. The British Accounting Review, 46(3), 215-227.
Ibarra Mares, A. (2002). Análisis de las dificultades financieras de las empresas en una economía emergente las bases de datos y las variables independientes en el sector hotelero de la bolsa mexicana de valores. Universitat Autònoma de Barcelona.
INEGI. (05 de Enero de 2016). Instituto Nacional de Estadística y Geografía. Obtenido de Esperanza de vida de los negocios a nivel nacional y por entidad federativa: https://www.inegi.org.mx/temas/evnm/default.html#Informacion_general
Katz, D., & Kahn, R. L. (1978). Organizations and the system concept. Classics of organization theory, 80, 480.
Kim, S., Mun, B. M., & Bae, S. J. (2018). Data depth-based support vector machines for predicting corporate bankruptcy. Applied Intelligence, 48(3), 791-804.
Kuger, M. (2019). Global Bankruptcy Report 2019. Nueva Jersey, EEUU: Dun & Bradstreet Worldwide Network.
Kumar, P. R., & Ravi, V. (2007). Bankruptcy prediction in banks and firms via statistical and intelligent techniques–A review. European journal of operational research, 180(1), 1-28.
Lennox, C. (1999). Identifying failing companies: a re-evaluation of the logit, probit and DA approaches. Journal of economics and Business, 51(4), 347-364.
Li, D., & Liu, J. (2009). Determinants of financial distress of ST and PT companies: A panel analysis of chinese listed companies. Disponible en el SSRN: http://ssrn.com/abstract=1341795.
Liu, J., & Wilson, N. (2002). Corporate failure rates and the impact of the 1986 insolvency act: An econometric analysis. Managerial Finance, 28(6), 61-71.
Lizano, M. M., Ochovo, R. B., & de Lema, D. G. P. (2010). Diferentes procesos de fracaso empresarial: un análisis dinámico a través de la aplicación de técnicas estadísticas clúster. Revista Europea de Dirección y Economía de la Empresa, 19(3), 67-88.
Madrid-Guijarro, A., García-Pérez-de-Lema, D., & Van Auken, H. (2011). An analysis of non-financial factors associated with financial distress. Entrepreneurship and Regional Development, 23(3-4), 159-186.
Mascareñas, J., & Alvarez-Pallete, J. M. (2006). China-Latinoamérica: ¿competencia o cooperación? Documento de Trabajo, 504.
Méndez Sáenz, A. B., Rodríguez García, M. D. P., & Cortez Alejandro, K. A. (2019). Factores Determinantes de la Responsabilidad Social Empresarial (RSE). Caso aplicado a México y Brasil. Análisis económico, 34(86), 197-217.
Montalván, S. M., Delgado, F. I. A., O'Shee, D. F., & Yamashiro, M. A. (2011). Determinantes de la insolvencia empresarial en el Perú. Academia. Revista latinoamericana de administración, (47), 126-139.
Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of accounting research, 109-131.
Pereira, J. M., Domínguez, M. Á. C., & Ocejo, J. L. S. (2007). Modelos de previsão do fracasso empresarial: aspectos a considerar. Tékhne-Revista de Estudos Politécnicos, (7), 111-148.
Pérez López, Cesar (2006). Problemas resueltos de econometría. Editorial Paraninfo.
Pervan, I., & Kuvek, T. (2013). The relative importance of financial ratios and nonfinancial variables in predicting of insolvency. Croatian Operational research review, 4(1), 187-197.
Pinzón, O. L. (2017). Causas e impacto socio-económico por liquidación de las empresas comerciales y de servicios. FACE Volumen 17-N°1, 44 - 54.
Platt, H., & Platt, M. (2012). Corporate board attributes and bankruptcy. Journal of Business Research, 65(8), 1139-1143.
Rahimian, E., Singh, S., Thammachote, T., & Virmani, R. (1993). Bankruptcy prediction by neural network. Neural networks in finance and investing, 159-176.
Rees, B. (1990). Financial analysis. Londres: Prentice Hall.
Ruiz Palomo, D. (2010). La solvencia empresarial: pirámides de ratios vs. marco teórico.
Schmalensee, R. (1985). Do markets differ much? The American economic review, 75(3), 341-351.
Segura, A. S. (1994). La rentabilidad económica y financiera de la gran empresa española. Análisis de los factores determinantes. Revista española de financiación y contabilidad, 159-179.
Simon, H. A. (1962). La toma de decisiones y la organización administrativa. El comportamiento administrativo. Madrid: Aguilar.
Startz, R. (2012). Bayesian Heteroskedasticity-Robust Standard Errors.
Tinoco, M. H., & Wilson, N. (2013). Financial distress and bankruptcy prediction among listed companies using accounting, market and macroeconomic variables. International Review of Financial Analysis, 30, 394-419.
Uhrig-Homburg, M. (2005). Cash-flow shortage as an endogenous bankruptcy reason. Journal of Banking & Finance, 29(6), 1509-1534.
Winakor, A., & Smith, R. (1935). Changes in the financial structure of unsuccessful industrial corporations. Bulletin, 51, 44.
Winter, S. G. (1996). Coase, la competencia y la corporación. Oliver E. Williamson y Sidney G. Winter (comps.), La naturaleza de la empresa. Orígenes, evolución y desarrollo, México, FCE.
Yarza, J. (19 de Agosto de 2019). Deloitte. Obtenido de Desaceleración en la construcción ¿Coyuntura o caída en picada?: https://www2.deloitte.com/mx/es/pages/dnoticias/articles/desaceleracion-en-la-construccion.html#
Zmijewski, M. E. (1984). Methodological issues related to the estimation of financial distress prediction models. Journal of Accounting research, 59-82.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Innovaciones de Negocios

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The InnOvaciOnes de NegOciOs magazine is a free and open access electronic magazine of a scientific-academic nature and is a publication of the Autonomous University of Nuevo León, in which the authors retain their copyright and grant the magazine the exclusive right to first publication of the work. Third parties are allowed to use the published content, as long as the authorship of the work is acknowledged and the first publication in this journal is cited.
For more information, please contact the Research Secretary (FACPyA) of the Autonomous University of Nuevo León. Telephone: (81) 1340-4430. Email: revinnova@uanl.mx